Sounds enhance visual completion processes

Publication date: 1 October 2018
Source:NeuroImage, Volume 179
Author(s): Ruxandra I. Tivadar, Chrysa Retsa, Nora Turoman, Pawel J. Matusz, Micah M. Murray
Everyday vision includes the detection of stimuli, figure-ground segregation, as well as object localization and recognition. Such processes must often surmount impoverished or noisy conditions; borders are perceived despite occlusion or absent contrast gradients. These illusory contours (ICs) are an example of so-called mid-level vision, with an event-related potential (ERP) correlate at ∼100–150 ms post-stimulus onset and originating within lateral-occipital cortices (the ICeffect). Presently, visual completion processes supporting IC perception are considered exclusively visual; any influence from other sensory modalities is currently unknown. It is now well-established that multisensory processes can influence both low-level vision (e.g. detection) as well as higher-level object recognition. By contrast, it is unknown if mid-level vision exhibits multisensory benefits and, if so, through what mechanisms. We hypothesized that sounds would impact the ICeffect. We recorded 128-channel ERPs from 17 healthy, sighted participants who viewed ICs or no-contour (NC) counterparts either in the presence or absence of task-irrelevant sounds. The ICeffect was enhanced by sounds and resulted in the recruitment of a distinct configuration of active brain areas over the 70–170 ms post-stimulus period. IC-related source-level activity within the lateral occipital cortex (LOC), inferior parietal lobe (IPL), as well as primary visual cortex (V1) were enhanced by sounds. Moreover, the activity in these regions was correlated when sounds were present, but not when absent. Results from a control experiment, which employed amodal variants of the stimuli, suggested that sounds impact the perceived brightness of the IC rather than shape formation per se. We provide the first demonstration that multisensory processes augment mid-level vision and everyday visual completion processes, and that one of the mechanisms is brightness enhancement. These results have important implications for the design of treatments and/or visual aids for low-vision patients.