The Tumor Necrosis Factor Superfamily Member RANKL Suppresses Effector Cytokine Production in Group 3 Innate Lymphoid Cells

Publication date: 19 June 2018
Source:Immunity, Volume 48, Issue 6
Author(s): Jennifer K. Bando, Susan Gilfillan, Christina Song, Keely G. McDonald, Stanley C.-C. Huang, Rodney D. Newberry, Yasuhiro Kobayashi, David S.J. Allan, James R. Carlyle, Marina Cella, Marco Colonna
While signals that activate group 3 innate lymphoid cells (ILC3s) have been described, the factors that negatively regulate these cells are less well understood. Here we found that the tumor necrosis factor (TNF) superfamily member receptor activator of nuclear factor κB ligand (RANKL) suppressed ILC3 activity in the intestine. Deletion of RANKL in ILC3s and T cells increased C-C motif chemokine receptor 6 (CCR6)+ ILC3 abundance and enhanced production of interleukin-17A (IL-17A) and IL-22 in response to IL-23 and during infection with the enteric murine pathogen Citrobacter rodentium. Additionally, CCR6+ ILC3s produced higher amounts of the master transcriptional regulator RORγt at steady state in the absence of RANKL. RANKL-mediated suppression was independent of T cells, and instead occurred via interactions between CCR6+ ILC3s that expressed both RANKL and its receptor, RANK. Thus, RANK-RANKL interactions between ILC3s regulate ILC3 abundance and activation, suggesting that cell clustering may control ILC3 activity.

Graphical abstract

image

Teaser

Although signals that activate group 3 ILCs (ILC3s) have been described, the factors that negatively regulate these cells are less well understood. Bando et al. demonstrate that the TNF superfamily member RANKL suppresses the abundance and effector functions of intestinal CCR6+ ILC3s and that RANKL-mediated suppression occurs through ILC3-ILC3 interactions.