Breakthrough whole body energy-specific and tissue-specific photoneutron dosimetry by novel miniature neutron dosimeter/spectrometer

This article was originally published here

Sci Rep. 2021 Oct 15;11(1):20552. doi: 10.1038/s41598-021-99612-2.


Breakthrough whole body energy-specific photoneutron (PN) dosimetry was made in/out-of-field in polyethylene phantom organ surface/depths remote from isocenter of 10 × 10 cm2 field prostate cancer therapy in 18 MV X-rays Varian Clinac 2100C medical linear accelerator for PN tissue-specific second primary cancer (PN-SPC) risk estimation. A novel miniature neutron dosimeter/spectrometer with polycarbonate/10B/cadmium inserts was invented and applied. Each dosimeter determines seven tissue-specific dose equivalent (mSv)/Gy X-ray dose at each measurement point providing seven major energy-specific responses for beam thermal, albedo thermal, total thermal, total epithermal, total fast, sum of totals (thermal + epithermal) and sum of totals (thermal + epithermal + fast) PNs dose equivalents. The neutron dosimeter is simple, efficient, and unique with high spatial resolution and provides matrix of energy-specific PN dose equivalent (mSv)/Gy X-ray dose on surface and organ depths for tissue-specific PN-SPC risk estimation. The dosimeter also performs like a “miniature neutron spectrometer” and is unique for other applications in health physics in particular individual neutron dosimetry, medical physics, space flights, science and technology.

PMID:34654858 | DOI:10.1038/s41598-021-99612-2