Phosphorus-nitrogen compounds. Part 58. Syntheses, structural characterizations and biological activities of 4-fluorobenzyl-spiro(N/O)cyclotriphosphazene derivatives

This article was originally published here

J Biomol Struct Dyn. 2021 Nov 25:1-21. doi: 10.1080/07391102.2021.2006084. Online ahead of print.

ABSTRACT

The starting compound, tetrachloro-4-fluorobenzyl-spiro(N/O)cyclotriphosphazene (2), was synthesized from the substitution reaction of hexachlorocyclotriphosphazatriene (N3P3Cl6; trimer; HCCP) with sodium 3-(4-fluorobenzylamino)-1-propanoxide (1). Reactions of spiro (2) with excess 1-(2-aminoethyl)-piperidine, 4-(2-aminoethyl)-morpholine, 1-(2-hydroxyethyl)piperidine and 4-(2-aminoethyl)morpholine yielded the fully substituted cyclotriphosphazene derivatives (2a-2d), respectively. Elemental analysis, mass spectrometry (ESI-MS), FTIR, 1H-, 13C- and 31P-NMR data confirmed the structure of the new cyclotriphosphazenes (2a-2d); and the crystal structure of 2 was also identified by X-ray crystallography. The quantum mechanical DFT calculations of 2 were performed to estimate the geometry optimization, total energy, orientation of frontier molecular orbitals (HOMOs and LUMOs), and chemical parameters. In addition, antibacterial and antifungal activities of the fully substituted 4-fluorobenzyl-spiro(N/O)cyclotriphosphazenes (2a-2d) were investigated against G(+) and G(-) bacteria and fungi. Using agarose gel electrophoresis, the DNA cleavage activities of these phosphazenes on double-stranded plasmid DNA were evaluated. To evaluate the abilities of compounds 2a-2d to inhibit cell proliferation in different concentrations, the antiproliferative and antimigrative activities against prostate adenocarcinoma (PC3), breast cancer (MCF7) and colon cancer (HT29) cell lines were studied in vitro; and the compound 2c was determined to be the most efficient against the three cancer cells.

PMID:34821202 | DOI:10.1080/07391102.2021.2006084