Circulating vitamin C concentration and risk of cancers: a Mendelian randomization study

This article was originally published here

BMC Med. 2021 Jul 30;19(1):171. doi: 10.1186/s12916-021-02041-1.


BACKGROUND: Circulating vitamin C concentrations have been associated with several cancers in observational studies, but little is known about the causal direction of the associations. This study aims to explore the potential causal relationship between circulating vitamin C and risk of five most common cancers in Europe.

METHODS: We used summary-level data for genetic variants associated with plasma vitamin C in a large vitamin C genome-wide association study (GWAS) meta-analysis on 52,018 Europeans, and the corresponding associations with lung, breast, prostate, colon, and rectal cancer from GWAS consortia including up to 870,984 participants of European ancestry. We performed two-sample, bi-directional Mendelian randomization (MR) analyses using inverse-variance-weighted method as the primary approach, while using 6 additional methods (e.g., MR-Egger, weighted median-based, and mode-based methods) as sensitivity analysis to detect and adjust for pleiotropy. We also conducted a meta-analysis of prospective cohort studies and randomized controlled trials to examine the association of vitamin C intakes with cancer outcomes.

RESULTS: The MR analysis showed no evidence of a causal association of circulating vitamin C concentration with any examined cancer. Although the odds ratio (OR) per one standard deviation increase in genetically predicted circulating vitamin C concentration was 1.34 (95% confidence interval 1.14 to 1.57) for breast cancer in the UK Biobank, this association could not be replicated in the Breast Cancer Association Consortium with an OR of 1.05 (0.94 to 1.17). Smoking initiation, as a positive control for our reverse MR analysis, showed a negative association with circulating vitamin C concentration. However, there was no strong evidence of a causal association of any examined cancer with circulating vitamin C. Sensitivity analysis using 6 different analytical approaches yielded similar results. Moreover, our MR results were consistent with the null findings from the meta-analysis exploring prospective associations of dietary or supplemental vitamin C intakes with cancer risk, except that higher dietary vitamin C intake, but not vitamin C supplement, was associated with a lower risk of lung cancer (risk ratio: 0.84, 95% confidence interval 0.71 to 0.99).

CONCLUSIONS: These findings provide no evidence to support that physiological-level circulating vitamin C has a large effect on risk of the five most common cancers in European populations, but we cannot rule out very small effect sizes.

PMID:34325683 | DOI:10.1186/s12916-021-02041-1