Extracellular vesicle microRNA cargoes from intermittent hypoxia-exposed cardiomyocytes and their effect on endothelium

This article was originally published here

Biochem Biophys Res Commun. 2021 Feb 26;548:182-188. doi: 10.1016/j.bbrc.2021.02.034. Online ahead of print.


Intermittent hypoxia (IH), a main characteristic of obstructive sleep apnea (OSA) syndrome, is an independent risk factor of cardiovascular complications. However, the mechanism has not been fully elucidated. Growing evidence has revealed alterations of extracellular vesicle (EV) contents, mostly miRNAs, playing a pathogenic role in cardiovascular complications. In current study, we attempt to compare the disparity of myocardial EV miRNA components after IH or normoxia treatment and determine whether EVs from IH-treated cardiomyocytes could affect endothelial function. 63 differentially expressed miRNAs were identified in EVs from IH-exposed cardiomyocytes by miRNA chip assay. Among them, 16 miRNAs with homologous sequence in mouse and human were verified by qPCR assay and 11 miRNAs were proved with the same tendency as miRNA chip assay. KEGG predicted that the function of differentially expressed miRNA was enriched to Akt signaling pathway. Notably, EVs from IH-exposed cardiomyocytes dramatically impaired endothelial-dependent relaxation and inhibited Akt/eNOS expression in endothelial cells. This study provides the first evidence that IH significantly alters myocardial EV miRNA composition and reveals a novel role of myocardial EVs in endothelial function under IH status, which will help to understand the OSA- or IH-related endothelial dysfunction from a new scope.

PMID:33647794 | DOI:10.1016/j.bbrc.2021.02.034