GB-2 inhibits ACE2 and TMPRSS2 expression: In vivo and in vitro studies

This article was originally published here

Biomed Pharmacother. 2020 Oct 10;132:110816. doi: 10.1016/j.biopha.2020.110816. Online ahead of print.

ABSTRACT

After the first case of Coronavirus disease 2019 (COVID-19) was reported in Wuhan, COVID-19 has rapidly spread to almost all parts of world. Angiotensin converting enzyme 2 (ACE2) receptor can bind to spike protein of SARS-CoV-2. Then, the spike protein of SARS-CoV-2 can be cleaved and activated by transmembrane protease, serine 2 (TMPRSS2) of the host cells for SARS-CoV-2 infection. Therefore, ACE2 and TMPRSS2 are potential antiviral targets for treatment of prevention of SARS-CoV-2 infection. In this study, we discovered that 10-250 μg/mL of GB-2, from Tian Shang Sheng Mu of Chiayi Puzi Peitian Temple, can inhibit ACE2 mRNA expression and ACE2 and TMPRSS2 protein expression in HepG2 and 293 T cells without cytotoxicity. GB-2 treatment could decrease ACE2 and TMPRSS2 expression level of lung tissue and kidney tissue without adverse effects, including nephrotoxicity and hepatotoxicity, in animal model. In the compositions of GB-2, we discovered that 50 μg/mL of theaflavin could inhibit protein expression of ACE2 and TMPRSS2. Theaflavin could inhibit the mRNA expression of ACE2. In conclusion, our results suggest that GB-2 and theaflavin could act as potential compounds for ACE2 and TMPRSS2 inhibitors in the further clinical study.

PMID:33049583 | DOI:10.1016/j.biopha.2020.110816