Molecular miR-19a in Acute Myocardial Infarction: Novel Potential Indicators of Prognosis and Early Diagnosis

OBJECTIVE:

Due to the increasing annual incidence rate of disability and mortality in patients with acute myocardial infarction (AMI), the need for an appropriate diagnostic tool has become a crucial urgent issue. An increase in biomarkers and protein levels in response to AMI can be used as a predictive biomarker with different sensitivities and specificities. This study aimed at investigating the role of miR-19a as a biomarker with acceptable sensitivity and specificity for early diagnosis of AMI.

METHODS:

We studied 175 patients with AMI admitted within 12 h of symptom onset and 90 healthy subjects as control group. Patients were divided into two groups, including group I (normal vessels and no significant artery stenosis) and primary percutaneous coronary intervention (PCI) group II (patients with more than 50% stenosis in vessels and severe atherosclerosis) diagnosed by angiography. The expression level of miR-19a was evaluated by the real-time polymerase chain reaction and other serum chemistries were also analyzed.

RESULTS:

The results demonstrated that circulating miR-19a levels were significantly increased in patient groups compared to the control group (2.88 ± 1.06 vs. 5.93 ± 1.28, P<0.0001). We also found that miR-19a levels were higher in group II (134.62-fold) than group I (15.42-fold). The upper levels of miR-19a were significantly correlated with the increased serum levels of CK-MB (ρ=0.29, P<0.0001), CTn I (ρ=0.4, P<0.0001) and creatinine (ρ=0.27, P<0.0001). In addition, Receiver Operating Characteristic (ROC) analysis revealed that circulating miR-19a had considerable diagnostic accuracy for the patients with normal vessel with an AUC of 0.930 (95% CI: 0.697-0.765) and for PCI patients with an AUC of 0.966 (95% CI: 0.748-0.784).

CONCLUSION:

Circulating miR-19a possibly has prognostic value to be used as a promising molecular target for early diagnosis and prognosis of AMI.